Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.751
Filtrar
1.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566027

RESUMEN

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Asunto(s)
Transferasas Alquil y Aril , Coffea , Liasas Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Semillas , Perfilación de la Expresión Génica
2.
Sci Rep ; 14(1): 8028, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580811

RESUMEN

Agroforestry is a management strategy for mitigating the negative impacts of climate and adapting to sustainable farming systems. The successful implementation of agroforestry strategies requires that climate risks are appropriately assessed. The spatial scale, a critical determinant influencing climate impact assessments and, subsequently, agroforestry strategies, has been an overlooked dimension in the literature. In this study, climate risk impacts on robusta coffee production were investigated at different spatial scales in coffee-based agroforestry systems across India. Data from 314 coffee farms distributed across the districts of Chikmagalur and Coorg (Karnataka state) and Wayanad (Kerala state) were collected during the 2015/2016 to 2017/2018 coffee seasons and were used to quantify the key climate drivers of coffee yield. Projected climate data for two scenarios of change in global climate corresponding to (1) current baseline conditions (1985-2015) and (2) global mean temperatures 2 °C above preindustrial levels were then used to assess impacts on robusta coffee yield. Results indicated that at the district scale rainfall variability predominantly constrained coffee productivity, while at a broader regional scale, maximum temperature was the most important factor. Under a 2 °C global warming scenario relative to the baseline (1985-2015) climatic conditions, the changes in coffee yield exhibited spatial-scale dependent disparities. Whilst modest increases in yield (up to 5%) were projected from district-scale models, at the regional scale, reductions in coffee yield by 10-20% on average were found. These divergent impacts of climate risks underscore the imperative for coffee-based agroforestry systems to develop strategies that operate effectively at various scales to ensure better resilience to the changing climate.


Asunto(s)
Coffea , Café , India , Agricultura , Granjas , Cambio Climático
3.
Sci Rep ; 14(1): 8237, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589450

RESUMEN

Coffee professionals have long known that the "roast profile," i.e., the temperature versus time inside the roaster, strongly affects the flavor and quality of the coffee. A particularly important attribute of brewed coffee is the perceived sourness, which is known to be strongly correlated to the total titratable acidity (TA). Most prior work has focused on laboratory-scale roasters with little control over the roast profile, so the relationship between roast profile in a commercial-scale roaster and the corresponding development of TA to date remains unclear. Here we investigate roast profiles of the same total duration but very different dynamics inside a 5-kg commercial drum roaster, and we show that the TA invariably peaks during first crack and then decays to its original value by second crack. Although the dynamics of the TA development varied with roast profile, the peak TA surprisingly exhibited almost no statistically significant differences among roast profiles. Our results provide insight on how to manipulate and achieve desired sourness during roasting.


Asunto(s)
Coffea , Calor , Temperatura , Tiempo
4.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622339

RESUMEN

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , Fitomejoramiento
5.
PLoS One ; 19(4): e0299493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625928

RESUMEN

Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.


Asunto(s)
Coffea , Café , Humanos , Haití , Ecosistema , Coffea/genética , Variación Genética
6.
Methods Mol Biol ; 2787: 209-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656492

RESUMEN

Coffea spp. is the source of one of the most widely consumed beverages in the world. However, the cultivation of this crop is threatened by Hemileia vastatrix Berk & Broome, a fungal disease, which reduces the productivity and can cause significant economic losses. In this protocol, coffee leaf segment derived from a chemical mutagenesis process are inoculated with uredospores of the pathogen. Subsequently, the gene expression changes are analyzed over the time (0, 5, 24, 48, and 120 h) using quantitative real-time polymerase chain reaction (RT-qPCR). The procedures and example data are presented for expression analysis in the CaWRKY1 gene. This procedure can be applied for quantitative analysis of other genes of interest to coffee breeders and scientists for elucidating the molecular mechanisms involved in the interaction between the plant and pathogen, potentially leading to the development of more efficient approaches for managing this disease.


Asunto(s)
Basidiomycota , Coffea , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Coffea/microbiología , Coffea/genética , Basidiomycota/genética , Basidiomycota/patogenicidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Perfilación de la Expresión Génica/métodos , Mutación , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Interacciones Huésped-Patógeno/genética
7.
Methods Mol Biol ; 2787: 225-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656493

RESUMEN

Coffee, an important agricultural product for tropical producing countries, is facing challenges due to climate change, including periods of drought, irregular rain distribution, and high temperatures. These changes result in plant water stress, leading to significant losses in coffee productivity and quality. Understanding the processes that affect coffee flowering is crucial for improving productivity and quality. In this chapter, we describe a protocol for transcriptome analysis using available Internet software, mainly in the Galaxy Platform, using RNA-Seq data from flowers collected from different parts of the coffee tree. The methods presented in this chapter provide a comprehensive protocol for transcriptome analysis of differentially expressed genes from flowers of coffee plant. This knowledge can be utilized in coffee genetic improvement programs, particularly in the selection of cultivars that are tolerant to water deficit.


Asunto(s)
Coffea , Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Flores/genética , Coffea/genética , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Programas Informáticos , Biología Computacional/métodos , RNA-Seq/métodos
8.
Methods Mol Biol ; 2788: 227-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656517

RESUMEN

The Coffea spp. plant is a significant crop in Latin America, Africa, and Asia, and recent advances in genomics and transcriptomics have opened possibilities for studying candidate genes and introducing new desirable traits through genetic engineering. While stable transformation of coffee plants has been reported using various techniques, it is a time-consuming and laborious process. To overcome this, transient transformation methods have been developed, which avoid the limitations of stable transformation. This chapter describes an ex vitro protocol for transient expression using A. tumefaciens-mediated infiltration of coffee leaves, which could be used to produce coffee plants expressing desirable traits against biotic and abiotic stresses, genes controlling biochemical and physiological traits, as well as for gene editing through CRISPR/Cas9.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Edición Génica , Hojas de la Planta , Plantas Modificadas Genéticamente , Transgenes , Coffea/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Agrobacterium tumefaciens/genética , Edición Génica/métodos , Transformación Genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas
9.
Methods Mol Biol ; 2788: 209-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656516

RESUMEN

Coffea arabica L. is a crucial crop globally, but its genetic homogeneity leads to its susceptibility to diseases and pests like the coffee berry borer (CBB). Chemical and cultural control methods are difficult due to the majority of the CBB life cycle taking place inside coffee beans. One potential solution is the use of the gene cyt1Aa from Bacillus thuringiensis as a biological insecticide. To validate candidate genes against CBB, a simple, rapid, and efficient transient expression system is necessary. This study uses cell suspensions as a platform for expressing the cyt1Aa gene in the coffee genome (C. arabica L. var. Catuaí) to control CBB. The Agrobacterium tumefaciens strain GV3101::pMP90 containing the bar and cyt1Aa genes are used to genetically transform embryogenic cell suspensions. PCR amplification of the cyt1Aa gene is observed 2, 5, and 7 weeks after infection. This chapter describes a protocol that can be used for the development of resistant varieties against biotic and abiotic stresses and CRISPR/Cas9-mediated genome editing.


Asunto(s)
Agrobacterium tumefaciens , Coffea , Coffea/genética , Agrobacterium tumefaciens/genética , Sistemas CRISPR-Cas , Plantas Modificadas Genéticamente/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus thuringiensis/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Edición Génica/métodos , Proteínas Hemolisinas/genética , Regulación de la Expresión Génica de las Plantas , Transformación Genética , Café/genética
10.
Sci Rep ; 14(1): 6069, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480775

RESUMEN

Arabica coffee is the most popular and best-selling type of coffee. During coffee fermentation, microorganisms are essential for the production of metabolites and volatile compounds that affect coffee flavor quality. This work aimed to study the mutation, selection, and characterization of the Wickerhamomyces anomalus strain YWP1-3 as a starter culture to enhance the flavor quality of Arabica coffee. The results revealed that six mutants could produce relatively high levels of the pectinase enzyme on pectin agar media and exhibited high activity levels, ranging from 332.35 to 415.88 U/ml in mucilage broth. Strains UV22-2, UV22-3, UV41-1 and UV32-1 displayed higher levels of amylase activity than did the wild type. The UV22-2 and UV22-3 mutants exhibited the highest pectin degradation indices of 49.22% and 45.97%, respectively, and displayed significantly enhanced growth rates in nitrogen yeast base media supplemented with various sugars; thus, these mutants were evaluated for their ability to serve as a starter for fermentation of Arabica coffee. The cupping scores of coffees derived from UV22-2 and UV22-3 were 83.5 ± 1.5 and 82.0 ± 2.14, respectively. The volatile compounds in the roasted coffee fermented by UV22-2 were analyzed by GC‒MS, which revealed higher levels of furfuryl alcohol and furfuryl acetate than did the other samples. These findings suggested that UV22-2 could be an influential starter culture for Arabica coffee fermentation.


Asunto(s)
Coffea , Café , Café/metabolismo , Fermentación , Coffea/metabolismo , Levaduras/genética , Pectinas/metabolismo
11.
Food Chem ; 446: 138862, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430775

RESUMEN

Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.


Asunto(s)
Coffea , Microextracción en Fase Sólida , Cromatografía de Gases y Espectrometría de Masas , Semillas , Análisis de los Mínimos Cuadrados , Soja
12.
J Econ Entomol ; 117(2): 666-669, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437589

RESUMEN

The diel flight activity in Cathartus quadricollis (Guerin-Meneville) (Coleoptera: Silvanidae), a predator of two important pests in Hawaii, coffee berry borer, Hypothenemus hampei (Ferrari) and tropical nut borer, Hypothenemus obscurus (F.) (Coleoptera: Curculionidae: Scolytinae) was studied in a macadamia nut orchard using yellow sticky traps baited with pheromone and fungal volatile attractants. The study was conducted at different months throughout the year and at different times during the lunar cycle (new moon and full moon). Flight activity peaked in the late hours of the photophase into the early hours of the scotophase, between 1830 and 2000 h; flight activity also occurred but to a lesser extent in the early morning hours between 0700 and 1030 h. Numbers of captured C. quadricollis during periods of flight activity were negatively correlated with wind speed. The implications of these findings for the development of optimal pest management strategies including biological control are discussed.


Asunto(s)
Coffea , Escarabajos , Gorgojos , Animales , Escarabajos/fisiología , Macadamia , Hawaii , Gorgojos/fisiología
13.
Int J Food Microbiol ; 415: 110638, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38430685

RESUMEN

Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.


Asunto(s)
Coffea , Lactobacillales , Ocratoxinas , Vitis , Café/metabolismo , Aspergillus/metabolismo , Coffea/microbiología , Levaduras , Vitis/microbiología
14.
Food Chem ; 448: 139143, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554584

RESUMEN

Sustainable carboxymethyl cellulose (CMC)-based active composite films were developed through the addition of polyphenol-rich extract from coffee husk (CHE) and carbon dots (CDs) prepared using the biowaste residue of CHE extraction. The influences of various CDs contents on the physicochemical and functional characteristics of composite films have been researched. The 6% (w/w) CHE and 3% (w/w) CDs were uniformly dispersed within the CMC matrix to produce a homogenous film with enhanced mechanical properties. The CMC/CHE/CDs3% film exhibited outstanding UV-light blocking, improved water and gas barriers, potent antioxidant activity with above 95% DPPH and ABTS scavenging rates, and effective antibacterial capabilities against L. monocytogenes and E. coli. The food packaging experiment demonstrated that this active composite film slowed the rotting of fresh-cut apples and extended their shelf-life to 7 days at 4 °C storage. Therefore, the obtained multifunctional film showed promise as an environmentally friendly food packaging material.


Asunto(s)
Carbono , Carboximetilcelulosa de Sodio , Embalaje de Alimentos , Extractos Vegetales , Polifenoles , Residuos , Embalaje de Alimentos/instrumentación , Polifenoles/química , Carboximetilcelulosa de Sodio/química , Extractos Vegetales/química , Carbono/química , Residuos/análisis , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Antioxidantes/química , Café/química , Coffea/química , Puntos Cuánticos/química , Malus/química
15.
ScientificWorldJournal ; 2024: 7585145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434937

RESUMEN

In this study, we investigated the use of manganese oxide-biochar nanocomposites (MnOx-BNC), synthesized from coffee husk (CH) and khat leftover (KL) for the removal of methylene blue (MB) from wastewater. Pristine biochars of each biomass (CH and KL) as well as their corresponding biochar-based nanocomposites were synthesized by pyrolyzing at 300°C for 1 h. The biochar-based nanocomposites were synthesized by pretreating 25 g of each biomass with 12.5 mmol of KMnO4. To assess the MB removal efficiency, we conducted preliminary tests using 0.2 g of each adsorbent, 20 mL of 20 mg·L-1 MB, pH 7.5, and shaking the mixture at 200 rpm and for 2 h at 25°C. The results showed that the pristine biochar of CH and KL removed 39.08% and 75.26% of MB from aqueous solutions, respectively. However, the MnOx-BNCs removed 99.27% with manganese oxide-coffee husk biochar nanocomposite (MnOx-CHBNC) and 98.20% with manganese oxide-khat leftover biochar nanocomposite (MnOx-KLBNC) of the MB, which are significantly higher than their corresponding pristine biochars. The adsorption process followed the Langmuir isotherm and a pseudo-second-order model, indicating favorable monolayer adsorption. The MnOx-CHBNC and MnOx-KLBNC demonstrated satisfactory removal efficiencies even after three and six cycles of reuse, respectively, indicating their potential effectiveness for alternative use in removing MB from wastewater.


Asunto(s)
Carbón Orgánico , Coffea , Compuestos de Manganeso , Nanocompuestos , Óxidos , Aguas Residuales , Catha , Azul de Metileno
16.
J Math Biol ; 88(3): 30, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400915

RESUMEN

Ontogenic resistance has been described for many plant-pathogen systems. Conversely, coffee leaf rust, a major fungal disease that drastically reduces coffee production, exhibits a form of ontogenic susceptibility, with a higher infection risk for mature leaves. To take into account stage-dependent crop response to phytopathogenic fungi, we developed an SEIR-U epidemiological model, where U stands for spores, which differentiates between young and mature leaves. Based on this model, we also explored the impact of ontogenic resistance on the sporulation rate. We computed the basic reproduction number [Formula: see text], which classically determines the stability of the disease-free equilibrium. We identified forward and backward bifurcation cases. The backward bifurcation is generated by the high sporulation of young leaves compared to mature ones. In this case, when the basic reproduction number is less than one, the disease can persist. These results provide useful insights on the disease dynamics and its control. In particular, ontogenic resistance may require higher control efforts to eradicate the disease.


Asunto(s)
Basidiomycota , Coffea , Micosis , Coffea/microbiología , Basidiomycota/fisiología , Micosis/epidemiología , Modelos Biológicos , Modelos Epidemiológicos
17.
Food Res Int ; 180: 114092, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395561

RESUMEN

Post-harvesting and microbial activity of coffee play a critical role in the metabolites and the sensory quality of the brew. The pulped natural/honey coffee process is an improvised semi-dry technique consisting of prolonged fermentation of depulped coffee beans excluding washing steps. The starter culture application in coffee industry plays an important role to enhance the cup quality. This work focuses on the fermentation of pulped natural/honey Robusta coffee with a starter culture (Saccharomyces cerevisiae MTCC 173) and the identification of fermentation patterns through 1H NMR, microbial ecology, volatomics and organoleptics of brew. Fermentation was accelerated by yeast populace (10 cfu log/mL) for 192 h. Principal compound analysis performed on 1H NMR led to the investigation of metabolites such as sugars, alkaloids, alcohols, organic acids and amino acids. Detection of some sugars and organic acids represented that the starter cultures imparted few metabolic changes during the process. A major activity of sugars in fermentation with 83.3 % variance in PC 1 and 16.7 % in PC 2 was observed. The chemical characteristics such as carbohydrates (41.88 ± 0.77 mg/g), polyphenols (34.16 ± 0.79 mg/g), proteins (58.54 ± 0.66 mg/g), caffeine (26.54 ± 0.06 mg/g), and CGA (21.83 ± 0.04 mg/g) were also evaluated. The heatmap-based visualization of GC-MS accorded characterization of additional 5 compounds in treated (T) coffee contributing to sweet, fruity and caramelly odor notes compared to untreated (UT). The sensory outlines 72.5 in T and 70.5 in UT scores. Preparation of honey coffee with Saccharomyces cerevisiae is the first report, which modulated the flavor and quality of coffee.


Asunto(s)
Coffea , Miel , Levadura Seca , Saccharomyces cerevisiae/metabolismo , Coffea/química , Azúcares/metabolismo
19.
J Econ Entomol ; 117(2): 545-554, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412327

RESUMEN

Several pests affect coffee (Coffea spp., Rubiaceae) and macadamia, Macadamia integrifolia Maiden & Betche (Proteaceae) in Hawaii. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae), is the most damaging to coffee, while the tropical nut borer, Hypothenemus obscurus (Fabricius) (Coleoptera: Curculionidae: Scolytinae), is one of the worst pests of macadamia. This paper investigates the potential efficacy of a long-lasting insecticide-incorporated net (LLIN) under laboratory conditions to manage these pests. The LLIN (40 denier with mesh size 625 knots/in²), incorporated with α-cypermethrin (0.34%), was excised into 100 mm circles and inserted in 100 mm Petri dishes. Nets with the same quality but without insecticides were used as control treatments. Twenty beetles (H. obscurus or H. hampei) each were placed on the treated and non-treated netting at 4 treatment or exposure hours-1, 6, 12, and 24-with 5 replicates. Subsequently, the beetles were ranked alive, affected, or dead. The results showed that the LLIN with α-cypermethrin had significant lethal and sub-lethal effects on both Hypothenemus species, causing over 90% mortality after 24 h of exposure and paralysis after 1, 6, and 12 h of exposure. The highest lethality value was recorded after 24 h of exposure for both H. obscurus and H. hampei. The LT50 of H. obscurus and H. hampei was 18.78 min and 2.15 h, respectively, while the LT90 values were 32.11 and 20.67 h. These results imply the potential effectiveness of LLINs with α-cypermethrin for management of H. obscurus and H. hampei, but field studies are warranted for optimization.


Asunto(s)
Coffea , Escarabajos , Insecticidas , Piretrinas , Gorgojos , Animales , Nueces
20.
Microbiol Res ; 282: 127638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422858

RESUMEN

The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored. This study aimed to investigate the effects of biological control agent-based bioproducts and a chemical nematicide, used in various combinations, on the control of root-knot nematodes and the profiling of the coffee plant rhizomicrobiome in a field trial. The commercially available biological products, including Trichoderma asperellum URM 5911 (Quality), Bacillus subtilis UFPEDA 764 (Rizos), Bacillus methylotrophicus UFPEDA 20 (Onix), and nematicide Cadusafos (Rugby), were applied to adult coffee plants. The population of second-stage juveniles (J2) and eggs, as well as plant yield, were evaluated over three consecutive years. However, no significant differences were observed between the control group and the groups treated with bioproducts and the nematicide. Furthermore, the diversity and community composition of bacteria, fungi, and eukaryotes in the rhizosphere soil of bioproduct-treated plants were evaluated. The dominant phyla identified in the 16 S, ITS2, and 18 S communities included Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Cercozoa in both consecutive years. There were no significant differences detected in the Shannon diversity of 16 S, ITS2, and 18 S communities between the years of data. The application of a combination of T. asperellum, B. subtilis, and B. methylotrophicus, as well as the use of Cadusafos alone and in combination with T. asperellum, B. subtilis, and B. methylotrophicus, resulted in a significant reduction (26.08%, 39.13%, and 21.73%, respectively) in the relative abundance of Fusarium spp. Moreover, the relative abundance of Trichoderma spp. significantly increased by 500%, 200%, and 100% at the genus level, respectively, compared to the control treatment. By constructing a co-occurrence network, we discovered a complex network structure among the species in all the bioproduct-treated groups. However, our findings indicate that the introduction of exogenous beneficial microbes into field conditions was unable to modulate the existing microbiota significantly. These findings suggest that the applied bioproducts had no significant impact on the reshaping of the overall microbial diversity in the rhizosphere microbiome but rather recruited selected microrganisms and assured net return to the grower. The results underscore the intricate nature of the rhizosphere microbiome and suggest the necessity for alternate biocontrol strategies and a re-evaluation of agricultural practices to improve nematode control by aligning with the complex ecological interactions in the rhizosphere.


Asunto(s)
Coffea , Compuestos Organotiofosforados , Tylenchoidea , Animales , Café , Suelo/química , Microbiología del Suelo , Bacterias/genética , Antinematodos , Coffea/microbiología , Rizosfera , Agentes de Control Biológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...